e -Selecting z32 to enter the basis gives:
u,-\v,- 2 5 4

-3 2) | 10 | (2
0 15 | 0o | 10

Optimal

/—0
0\100

e Or selecting 13 (instead of z33) to enter the basis gives:
u;\v; 2 5 4

-1 0 10 | (0) 0
| 15 Optimal
0 15 | (2) | 10 10 piima
.10

(Note: We get the same z}; but different optimal spanning tree representations for alter-

native optimal solutions.)

Assignment Problem (AP)

Consider assigning n jobs to n machines such that one job is assigned to one machine and
one machine gets only one job. (Total number of possible assignment is n!) A cost c;; is
associated with assigning job ¢ to machine j, 1 = 1,2,.-- ,n; § = 1,2,--- ,n. The least

total cost assignment is then a (zero-one) linear program as follows:

’

n n
Min TIg = EZC,‘,‘:E,-J'
=1 g=1
7"
< subject to Z zi;=1 (f=1,2,---,m) [one job sets one machines]

Jj=1

n
Z“’ij =1 (1=1,2,--- ,n) [one machine gets one job]
=1

L mij..——_o,l (1:1,2’-..,m;j:l’z,...’n)

REMARK: Both TP and AP have their coefficient matrices as node-edge incidence ma-
trices, which are totally unimodular, i.e. the determinants of all their square submatrices
are equal to 0,41. This implies that the BFS solutions (hence the optimal solutions) are
integer-valued even if the integral constraints are discarded, provided all s; and d; are

integers in the case of TP.



Standard LP methods are applicable for AP (with z;; = 0,1 replaced by 0 < z;; < 1);
however, there is a much more efficient direct method (generally known as the assignment

algorithm). Take as an example a 3 X 3 cost matrix of AP:

Ci1 C12 €13
C = c21 c22 c23
C31 C32 €33

The key observation of the assignment algorithm is that without loss of generality, we may

assume ¢;; > 0 Vi, 5. This is justified by the following claim.

CLAIM.  If a constant is added to or subtracted from any row or column of C, giving
C'; the minimization of the modified objective function zo' = ) ci;'z:; ylelds the same
%3
solution z;; as the original objective function zo = ) ¢i;Tij;.
i,

PROOF: Suppose —p; is added to row 1 and g; is subtracted from column j. Then
o' = Z Cij'xij = Z(Ci:f = pi — q5)Ti; = Z CijTij — ZP; Z Tij — Z a5 Z Tig
i, i3 1,7 i 7 J i
= Z CijTij — (Zp; -+ Z q,-) = gg — constant |
1,5 i J

We use this idea to create a new coefficient matrix C' with at least one zero element in
each row and in each column, and if using zero elements only (or a subset of which) yields
a feasible assignment (with total cost = 0, of course), then this assignment is optimal

because the total cost of any feasible assignment > 0, since c:-j >0V,

Basically this approach is a dual method because at any time, p; and g¢; together
yield a feasible solution to the dual of AP. [Exercise. Construct this dual.] This is because

céjz0=>c,-j—p,~——q,-200rp,-+qjSc;j.



EXAMPLE

5 | 7| 9 p1=5 o | 21| 4
14 10 12 p2 = 10 = 4 0 2
15 | 13 | 16 pa = 13 2 |03
> pi =28 1=0¢:=0¢3=2;3 ¢; =2
L1 J
L
L 0* 2 Now the number of zero cells (= 4) > n(= 3)
=7 4 0 0* and Y p; + > q = 30 [which is the cost of any
1 k)
2 0 . optimal assignment. Why?]

Define a “cover” by a minitmum number of lines to cover all zero elements. Then

“cover” < n. If the “cover” is n then we have an assignment on only the zero elements.

The actual assignment (of jobs to machines) is obtained by a trace-back as follows:

Let z;; = number of zeros in row ¢ + column j, where the i-jth entry is zero. Make

successive assignments in increasing z;; order. Delete row ¢ and column j upon assignment

1-7 is made.

For our example, we have the optimal assignment of 23, = z3; = 23, =1, 2}, =0V

L)

other ¢, 7 with = = 30.

Improvement algorithm when “cover” < =

Let h = Min; j)jei;— (pi+7)>0(Ci5 — (Pi +¢5)] > 0
pi+—p;—h if 7 is a covered row
Set

p; unchanged if not
{ g; —g;+h if 5 is not a covered column
Set

q; unchan_ged if covered

Graphically,
covered uncovered
covered +h 0
uncovered 0 —h




Observe that since all zeros are previously covered, all entries after this change remain
> 0. This algorithm creates (at least) one more zero entry, which is previously uncovered
and positive; while possibly increasing some previously zero entries that are covered by 2
lines. To apply this algorithm, select the smallest uncovered element, subtract that from

every uncovered element and add that to every element covered by two lines.

EXAMPLE ON ASSIGNMENT PROBLEM (n = 4)
Subtracting constants from rows and columns of the assignment tableau gives:

(3 lines < 4 =n)

L

1 4 6 3 1 0 3 5 2 0 3 2 2

8 7 10 9 7 10 3 2 L | 100 2

4 5 11 7 4 017 3 0 1 4 3

6 7 8 5 5 1 2 3 0 L |l 1200
Z=17' 0 0 3 0‘223 (3opi+2_ g5 = 20)

Selecting the smallest uncovered element (h = 1 in this case), subtracting that from every

uncovered element and adding that to every element covered by 2 lines gives:

(h=1)

L

03 2 2 o] 2 1 1
L | 1002 ~h 2 o [o] 2

01 4 3 o [0] 3 =2
L|1200 ~h 2 2 o [0]

+h +h +h

Assignment (in increasing order of number of zeros in row and column) gives:
:1:11* = :Bzg* = 3332* = 2:44* = 1 and all other :L',;J'* = 0. 2}0,* =20+ [3(1) - 2(1)] =21.

(Alternatively, =zo* =c11+cas+csa+caa=1+104+5+5=21.)

Network Flows Problems

Consider a directed graph G = (N, A), where N is the set of nodes and A is the set of
arcs, i.e. A is a set of ordered pairs (7,7) such that {,5 € N. A (simple) path in G is a



