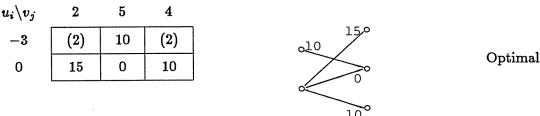
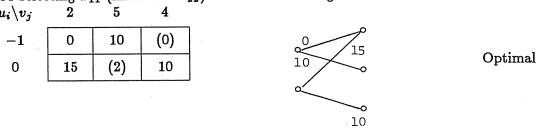
• Selecting x_{22} to enter the basis gives:



• Or selecting x_{11} (instead of x_{22}) to enter the basis gives:



(Note: We get the same x_{ij}^* but different optimal spanning tree representations for alternative optimal solutions.)

Assignment Problem (AP)

Consider assigning n jobs to n machines such that one job is assigned to one machine and one machine gets only one job. (Total number of possible assignment is n!) A cost c_{ij} is associated with assigning job i to machine j, $i = 1, 2, \dots, n$; $j = 1, 2, \dots, n$. The least total cost assignment is then a (zero-one) linear program as follows:

$$\begin{cases} &\text{Min} \quad x_0 = \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij} \\ &\text{subject to} \quad \sum_{j=1}^n x_{ij} = 1 \qquad (i=1,2,\cdots,m) \qquad \text{[one job sets one machines]} \\ & \quad \sum_{i=1}^n x_{ij} = 1 \qquad (j=1,2,\cdots,n) \qquad \text{[one machine gets one job]} \\ & \quad x_{ij} = 0,1 \qquad (1=1,2,\cdots,m; \ j=1,2,\cdots,n) \end{cases}$$

REMARK: Both TP and AP have their coefficient matrices as node-edge incidence matrices, which are totally unimodular, i.e. the determinants of all their square submatrices are equal to $0,\pm 1$. This implies that the BFS solutions (hence the optimal solutions) are integer-valued even if the integral constraints are discarded, provided all s_i and d_j are integers in the case of TP.

Standard LP methods are applicable for AP (with $x_{ij} = 0, 1$ replaced by $0 \le x_{ij} \le 1$); however, there is a much more efficient direct method (generally known as the assignment algorithm). Take as an example a 3×3 cost matrix of AP:

The key observation of the assignment algorithm is that without loss of generality, we may assume $c_{ij} \geq 0 \ \forall i, j$. This is justified by the following claim.

CLAIM. If a constant is added to or subtracted from any row or column of C, giving C'; the minimization of the modified objective function $x_0' = \sum_{i,j} c_{ij}' x_{ij}$ yields the same solution x_{ij} as the original objective function $x_0 = \sum_{i,j} c_{ij} x_{ij}$.

PROOF: Suppose $-p_i$ is added to row i and q_j is subtracted from column j. Then

$$x_{0}' = \sum_{i,j} c_{ij}' x_{ij} = \sum_{i,j} (c_{ij} - p_{i} - q_{j}) x_{ij} = \sum_{i,j} c_{ij} x_{ij} - \sum_{i} p_{i} \sum_{j} x_{ij} - \sum_{j} q_{j} \sum_{i} x_{ij}$$

$$= \sum_{i,j} c_{ij} x_{ij} - (\sum_{i} p_{i} + \sum_{j} q_{i}) = x_{0} - \text{constant}$$

We use this idea to create a new coefficient matrix C' with at least one zero element in each row and in each column, and if using zero elements only (or a subset of which) yields a feasible assignment (with total cost = 0, of course), then this assignment is optimal because the total cost of any feasible assignment ≥ 0 , since $c'_{ij} \geq 0 \ \forall_{ij}$.

Basically this approach is a dual method because at any time, p_i and q_j together yield a feasible solution to the dual of AP. [Exercise. Construct this dual.] This is because $c'_{ij} \geq 0 \Rightarrow c_{ij} - p_i - q_j \geq 0$ or $p_i + q_j \leq c_{ij}$.

EXAMPLE

	$m{L}$		
$oldsymbol{L}$	0*	2	2
$\Rightarrow L$	4	0	0*
	2	0*	1

Now the number of zero cells $(=4) \ge n (=3)$ and $\sum_{i} p_{i} + \sum_{j} q = 30$ [which is the cost of any optimal assignment. Why?]

Define a "cover" by a minimum number of lines to cover all zero elements. Then "cover" $\leq n$. If the "cover" is n then we have an assignment on only the zero elements. The actual assignment (of jobs to machines) is obtained by a trace-back as follows:

Let $z_{ij} \equiv \text{number of zeros in row } i + \text{column } j$, where the i-jth entry is zero. Make successive assignments in *increasing* z_{ij} order. Delete row i and column j upon assignment i-j is made.

For our example, we have the optimal assignment of $x_{11}^* = x_{23}^* = x_{32}^* = 1$, $x_{ij}^* = 0 \,\forall$ other i, j with $x_0^* = 30$.

Improvement algorithm when "cover" < n

$$\begin{array}{l} \text{Let } h \equiv \text{Min}_{(i,j)|c_{ij}-(p_i+q_j)>0}[c_{ij}-(p_i+q_j)]>0 \\ \\ \text{Set } \left\{ \begin{array}{l} p_i \leftarrow p_i-h & \text{if } i \text{ is a covered row} \\ \\ p_i \text{ unchanged} & \text{if not} \end{array} \right. \\ \\ \text{Set } \left\{ \begin{array}{l} q_j \leftarrow q_j+h & \text{if } j \text{ is } \textit{not a covered column} \\ \\ q_j \text{ unchanged} & \text{if covered} \end{array} \right. \\ \\ \text{Graphically,} \end{array}$$

	covered	uncovered
covered	+h	0
uncovered	0	-h

Observe that since all zeros are previously covered, all entries after this change remain ≥ 0 . This algorithm creates (at least) one more zero entry, which is previously uncovered and positive; while possibly increasing some previously zero entries that are covered by 2 lines. To apply this algorithm, select the smallest uncovered element, subtract that from every *uncovered* element and add that to every element covered by two lines.

EXAMPLE ON ASSIGNMENT PROBLEM (n=4)

Subtracting constants from rows and columns of the assignment tableau gives:

Selecting the smallest uncovered element (h = 1 in this case), subtracting that from every uncovered element and adding that to every element covered by 2 lines gives:

$$(h=1)$$
 L
 L
 $\begin{bmatrix} 0 & 3 & 2 & 2 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 4 & 3 \\ 1 & 2 & 0 & 0 \end{bmatrix} \quad -h$
 $\begin{bmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 0 & 2 \\ 0 & 0 & 3 & 2 \\ 2 & 2 & 0 & 0 \end{bmatrix}$
 $+h + h + h$

Assignment (in increasing order of number of zeros in row and column) gives:

$$x_{11}^* = x_{23}^* = x_{32}^* = x_{44}^* = 1$$
 and all other $x_{ij}^* = 0$. $x_{0}^* = 20 + [3(1) - 2(1)] = 21$. (Alternatively, $x_{0}^* = c_{11} + c_{23} + c_{32} + c_{44} = 1 + 10 + 5 + 5 = 21$.)

Network Flows Problems

Consider a directed graph G = (N, A), where N is the set of nodes and A is the set of arcs, i.e. A is a set of ordered pairs (i, j) such that $i, j \in N$. A (simple) path in G is a